Mapping-aware Logic Synthesis with
Parallelized Stochastic Optimization

Zhiru Zhang
School of ECE, Cornell University

September 29, 2017 @ EPFL

T OND
o e
Ul gz)i Cornell University .=
\up "
=5

A Case Study on Digit Recognition

Random Sampling of MNIST

(a) Binary string in 2D array

bit6 popcount (bit49 digit)
{
bit6 ones = 0;
for (1 = 0; 1 < 49; i++)
ones += digit[i];
return ones;

}

Computes hamming distance
between training & test samples

\~§
—

Adder Tree

0000000
0011100
0110110
0110010
0110110
0011100
0000000

.
-
-
-
-
-
-
-

(Narrow)

[
~—y
~—y
[
~—y
~ oy
-~

(b) Binary image

_____|HLS | Manual

LUTs 2405 |1305
FFs 2400)810
BRAMs 60 60

Manual: combinational
HLS tool: 2 cycles

LUT-based Technology Mapping

» Look-up tables (LUTs): the core building blocks of
FPGAs

— AKk-LUT can implement any K-input 1-output Boolean function, or
any k-feasible cone in the logic network

A 3-feasible cone

Delay estimation in HLS is inaccurate without considering LUT mapping

Scheduling and Mapping Interdependence

Determine register boundaries
HLS = Inaccurate delay model due to
lack of mapping awareness

Mapping

Determine LUT network
= More realistic delay, but cannot
change register boundaries

Post-RTL
Flow

Mapping-Aware Scheduling [FPGA’15]
|1 12

11 12

Cycle 1

Cycle 2

Conventional schedule
(5ns cycle time target)
Latency = 3 cycles

Mapping-aware schedule
(4-input LUT)
Latency =1 cycle

4
M. Tan, S. Dai, U. Gupta, Z. Zhang, Mapping-Aware Constrained Scheduling for LUT-Based FPGAs, FPGA’2015.

What about Post-RTL Synthesis?

» Case 1: Min-area mapping without logic restructuring

— Already NP-hard]

» | Case 2: with logic restructuring

{zm Focus of this talk

— Even harder to find optimal solution
— Existing approach: heuristically transform logic network for better

mapping quality

Example: map to 3-input LUTs
ab ac

[1] Farrahi and Sarrafzadeh, TCAD’02

Transformation Sequence

-mapping

Typical Pre

» Atypical area-minimizing script in ABC:

balance — rewrite — balance — rewrite

inverter graph for xor5

[S

-

STRER

REP NS
I
]

N

Initial and

0

A predetermined technology-independent optimization sequence

Autotuning Logic Synthesis Tool

> Applying DATuner, a distributed autotuning framework,
to auto determine the logic transformation sequence

Design

CAD Tool
Settings [

O
-

-
-
O

O a0
V]
O O

g O
-
- »
Tl P
. .
A B §

1 rewire :
off| o I : .
1] _* > Optimized tool
x P ,"o_) settings
on X Y)
1 oxe

on | off retime

github.com/cornell-zhang/datuner

C. Xu, G. Liu, R. Zhao, S. Yang, G. Luo, and Z. Zhang, A Parallel Bandit-Based Approach for Autotuning
FPGA Compilation, FPGA2017.

DATuner: Dynamic Solution Space Partitioning

» Separating promising from unpromising subspaces
— @Guided by information gain derived from QoR of known samples

rewire % rewire 4
o |
off | D1 ° ofi| P1 @ : D,
o p 4 X ¢
X ® | X x
———————— p
D, e :
o X o !
on| e X % on o | %
> . I x >
on off retime on off retime
Partition A (bad) Partition B (good)
H(D,) = 0 1 0 0 1 o)\ _ 0.3 Dyo=D,UD
(Dy) = _EX og(ﬁ)—ﬁx 08<E)— : (Dp = D; U Dy)
H(D;) = H(D;) = 0.3 H(D1) — H(Dz) =0

Information gain = 0.3 — % (0.3+03)=0 Information gain = 0.3 — % (0+0)=0.3
8

Autotuning vs. ABC: Unconstrained Area Minimization

7% |mprovement

100%
S 80%
<
IS 60%
N
= 40%
E 20%
Z 0%
Q'}’ e} S \0 ’(, V] 'Q < \' \' . Q"Q ,gel er
bc(bn S (S %0&\ \o% @/ & S @n 5> E \,O
$ &9 g
® ABC Optimized ® DATuner

» ABC Optimized: designs optimized with compressZ2rs script
» DATuner: a budget of 128 ABC runs across 4 machines
» EPFL benchmarks: http://Isi.epfl.ch/benchmarks

Autotuning vs. Best Known Records (v2017.1)

100%
29% over

80% .~ baseline
60%
40%
20%

0%

‘b 0& ' Q’& 5 o

&, & ¢ 9 o & &

7% |mprovement

Normalized area

B ABC Optimized ®DATuner & Best known results (2017.1 version)

» ABC Optimized: designs optimized with compressZ2rs script
» DATuner: a budget of 128 ABC runs across 4 machines

» EPFL benchmarks: http://Isi.epfl.ch/benchmarks
— Best known results: from EPFL record, version 2017.1

PIMap: Parallelized Mapping-Aware Logic Synthesis
[FPGA'17]

» Mapping-guided logic transformations
— lteratively improve area

‘ Technology mapping

‘ Logic transformation

» Effective partitioning and parallelization technique

— Improve both runtime and design quality
thread 1 thread 2

R

G. Liu and Z. Zhang, A Parallelized Iterative Improvement Approach to Area Optimization for LUT-Based |,
Technology Mapping, FPGA’2017.

PIMap Technique: lterative Area Minimization

Use mapping result to guide randomly

proposed logic transformations

12

PIMap Technique: lterative Area Minimization

Use mapping result to guide randomly

proposed logic transformations

13

PIMap Technique: lterative Area Minimization

Use mapping result to guide randomly
proposed logic transformations

Transformation #1

14

PIMap Technique: lterative Area Minimization

Use mapping result to guide randomly
proposed logic transformations

Transformation #1

Metropolis-Hastings algorithmll:

Accept current transformation if rand(0,1) < exp(—y %M)
LUTlold

[1] Hastings, Biometrika’70 15

PIMap Technique: lterative Area Minimization

Use mapping result to guide randomly
proposed logic transformations

Transformation #1 Transformation #2

Metropolis-Hastings algorithmll:

Accept current transformation if rand(0,1) < exp(—y NN_i_LUT ”ZV)
LUTlo

[1] Hastings, Biometrika’70 16

PIMap Technique: lterative Area Minimization

Use mapping result to guide randomly
proposed logic transformations

Transformation #1 Transformation #2

Metropolis-Hastings algorithmll:

Accept current transformation if rand(0,1) < exp(—y NN_i_LUT ”ZV)
LUTlo

[1] Hastings, Biometrika’70 17

PIMap Technique: lterative Area Minimization

Use mapping result to guide randomly
proposed logic transformations

Transformation #1

Metropolis-Hastings algorithmll:

Accept current transformation if rand(0,1) < exp(—y %M)
LUTlold

[1] Hastings, Biometrika’70

18

Need for Partitioning

> Without partitioning —+—No partition
- Long runtime per trial
— Easily stuck at local minimum 8900 EPFL design: div

3800 ‘b
———————

LUT Count

0O 5 10 15 20 25 30 35 40
Trial

19

PIMap Technique: Partitioning and Parallelization

Initial mapping to LUT Subgraph extraction lterative area minimization Recombine subgraphs

Mapped netlist

34 LUTs

20

PIMap Technique: Partitioning and Parallelization

Initial mapping to LUT Subgraph extraction lterative area minimization Recombine subgraphs

B Nodes in subgraph 1
B Nodes in subgraph 2

Mapped netlist

21

PIMap Technique: Partitioning and Parallelization

Initial mapping to LUT Subgraph extraction lterative area minimization Recombine subgraphs

B Nodes in subgraph 1
AIG of design b9 B Nodes in subgraph 2

Mapped netlist

22

ion

t

1Za

d Parallel

itioning an

Part

PIMap Technique

Initial mapping to LUT Subgraph extraction lterative area minimization Recombine subgraphs

B Nodes in subgraph 1

Mapped netlist

B Nodes in subgraph 2

AIG of design b9

\ 1
] ——

ANWAYAYN

=L

[===
HIA

W
Iv JAN

34 LUTs

23

PIMap Technique: Partitioning and Parallelization

Subgraph extraction

B Nodes in subgraph 1
B Nodes in subgraph 2

Mapped netlist

34 LUTs

Subgraph 1 Subgraph 2

24

PIMap Technique: Partitioning and Parallelization

Initial mapping to LUT Subaraph extraction lterative area minimization Fecombine subaraphs

v

25

PIMap Technique: Partitioning and Parallelization

Initial mappina to LUT Subaraph extraction lterative area minimization Recombine subgraphs

14 LUTs 15 LUTs

26

PIMap Technique: Partitioning and Parallelization

Initial mappina to LUT Subaraph extraction lterative area minimization Recombine subgraphs

14 LUTs 15 LUTs

s

27

PIMap Technique: Partitioning and Parallelization

Initial mappina to LUT Subaraph extraction lterative area minimization Recombine subgraphs

14 LUTs 15 LUTs

s

28

PIMap Technique: Repartition

Initial mapping to LUT Subgraph extraction lterative area minimization Recombine subgraphs

Optimized design after trial 1

_‘Ab'féA‘\\\ 7T

N '@E@ﬁ!@ﬁ‘)"‘/
I B e W 1

= — —— |
ST == ==

N
e
[

Repartition using different seeds

29

PIMap Technique: Repartition

Optimized design after trial 1

33 LUTs

Repartition using different seeds » |terative area minimization

Recombine subgraphs

30

PIMap Technique: Repartition

Optimized design after trial 1

Repartition using different seeds » |terative area minimization

(N
A\

Recombine subgraphs

One trial

31

Partitioning Schemes

> Without partitioning

— Long runtime per trial —+—No partition

-~ Easily stuck in local optima 16 partitions, 5 LUTs/partition
3900

EPFL design: div

> Fine-grained partition _ 3800 T e . T

~ Bear a similarity to exact synthesis 5 3700
— Fast runtime per trial (5)3600
— But slow progress overall - 3500
3400
3300

0O 5 10 15 20 25 30 35 40
Trial

32

Partitioning Schemes

> Without partitioning
— Long runtime per trial —+—No partition

_ EaSIIy Stuck In Iocal Optlma 16 partitions, 5 LUTs/partition
—+—16 partitions, 100 LUTs/partition

EPFL design: div

» Fine-grained partition
— Bear a similarity to exact synthesis
— Fast runtime per trial
— But slow progress overall

LUT Count

> Coarse-grained partition 3300
— Balance runtime and solution quality 0 5 10 15 20 25 30 35 40

Trial
— Repartition between trials to further
improve quality

33

PIMap Overall Flow

Design C1908 from the MCNC benchmark suite
5 trials in total

LUT Count = 89
_Area Improvement = 0%

Initial Design

Observations:
1. Partition boundaries vary between trials
—> Uncover better structure
2. Overall network structure differ significantly between trials
—> Discover a wide range of designs

34

Experimental Setup

PIMap toolchain Benchmarks
VYoo ABC's logic Benchmark Initial design
S 1ec transformations: 10 largest | pre-synthesized using
NEYBEl balance, rewrite, refactor MCNC ABC’s compress2rs
designs '] script

lterative area
minimization
routine

Subgraph extraction
and parallelization
control

EPFL best-known mapping
arithmetic designs @
designs 12

[1] Yang, MCNC’91
[2] Amaru, et al., http://Isi.epfl.ch/benchmarks

Setup

Configuration

40 trials, 100 iterations of area minimization per trial

Partitioning

up to 16 subgraphs, each with up to 100 LUTs

Computing resource | up to 8 machines, each with a quad-core Xeon processor

35

Area Minimization Results

Best-known results

100%

95%
90%
85%
80%
75%
70%

design name adder shifter divisor hyp logZ max mult sine sqrt square average
(initial LUT count) (201) (512) (3813) (44635) (7344) (532) (5681) (1347) (3286) (3800)

Normalized area

Initial design ®5 trials ™10 trials ™40 trials

> Initial design: best-known results from EPFL record

36

Area Minimization Results

Best-known results

14% improvement

(3800 to 3281 LUTS) 7/° Improvement

100%

95%
90%
85%
80%
75%
70%

design name adder shifter divisor hyp log2 max mult sine sqrt square average
(initial LUT count) (201) (512) (3813) (44635) (7344) (532) (5681) (1347) (3286) (3800)

Normalized area

Initial design ®5 trials ™10 trials ™40 trials
> Initial design: best-known results from EPFL record

> Area improvements
- EPFL: 7% on average, up to 14%

37

Area Minimization Results

100%

95%
90%
85%
80%
2 |
70%

design name adder shifter divisor | hyp log2 max mult sine sqrt square average
(initial LUT count) (201) (512) (3813) 1(44635) (7344) (532) (5681) (1347) (3286) (3800)

Normalized area

Initial design ®5 trials ™10 trials ™40 trials
> Initial design: best-known results from EPFL record
> Area improvements

- EPFL: 7% on average, up to 14%
— Can effectively handle large circuit (~44k LUTSs)

» Also able to improve all 10 control-intensive designs in EPFL
benchmark suite

38

LUT Count vs. Gate Count Reduction

Verified:

post-mapping area does not necessarily correlate with pre-mapping area

Normalized Node Count

div log2

1.04 116

1.12

1.08
0.96 1.04
y
0.92
0.96
0.88 0.92
0 10 20 30 40 0O 10 20 30 40

multiplier

square

1.16
1.12
1.08
1.04

1.1 ¢
1.06

1.02 t/ -=—LUT Count

0.98 I\ -*—Gate Count
0.96
0.92 0.94 |
0.88 0.9 ' '
0 10 20 30 40 0 10 20 30 40

Number of Trial

39

Partition Granularity vs. Runtime

» Trade-off between runtime vs. progress per trial
— Optimal subgraph size is around 100 LUTs

1 ¢
0.8 r
06 r

04

0.2

Normalized Runtime

O 1 1 1 1 1
0 100 200 300 400 500 600

Subgraph Size
——div ——log2 multiplier square

40

Depth Constrained Area Minimization on MCNC

» Constraint: no depth increase compared to initial design
— Initial designs generated by ABC’s depth-minimizing resynZ2 script

» Area improvements under depth constraint for MCNC benchmarks
- 11% on average, up to 30%

30% improvement

100%
95%
90%
85%
80%
75%
0% '
o 0 A E AR
60%

design name alud apex2 apex4d des ex1010 exSp misex3 pdc seq spla average
(initial LUT count/depth) (511/5) (674/6) (588/5) (818/5) (655/5) (351/5) (443/5) (1431/7) (693/5) (1392/7)

Normalized area

Initial design ™5 trials ™10 trials ™40 trials

41

Extending PIMap to Approximate Logic Synthesis

Approximate transformations

O D DDy
reduce flip add Il/
-~ //

= /

\\ I

Repartition using different seeds > Iterative area minimization

: : / : m One trial
Hypothesis testing of error metric U

Recombine subgraphs

42

Statistically Certified Approximate Synthesis
[ICCAD’17]

Approximate

f =ab + bcd f=ab+ cd

» Previous approaches (sample-based testing):
-~ Randomly pick N input vectors, then simulate, error rate = Nincorrect/N

> Qur approach: Formally quantify errors using hypothesis testing

Testing different types of error metrics

Error metric Test target Test statistic

Error rate Sample occurrence Binomial test
Average error magnitude Sample mean T-test
Error variance Sample variance x>-test

G. Liu and Z. Zhang, Statistically Certified Approximate Logic Synthesis, ICCAD’2017.

PIMap Summary

» Current logic synthesis flow still leaves nontrivial room for area
improvement (up to 30%)

» Parallelized stochastic optimization is an effective approach for
technology-aware synthesis

» Similar opportunities exist in RTL and high-level synthesis

—

Chortle

o
©

0.8 DAGMap
5 0.7
o 0.
_&’ FlowMap
©
£ 0.6 K and L
o
Z 0.5 IMap Exact
DAOMap synthesis
0.4 PIMap
ABC Map ¢
0.3
1990 1994 1998 2002 2006 2010 2014 2018
Year
Chortle: Francis, et al., DAC’90 CutMap: Cong and Hwang, FPGA’95 Imap: Manohararajah, et al., TCAD’06
DAGMap: Chen, et al., DT’92 DAQOMap: Chen and Cong, ICCAD’04 ABC Map: Mishchenko, et al., TCAD’07 44

FlowMap: Cong and Ding, TCAD’94 K and L: Kao and Lai, TDAES’05 Exact synthesis: Haaswijk, et al., ASPDAC’17

